
situations, it can be orders of magnitude
more productive than scripted testing.” 

In his article  “Exploratory Testing
Explained,” Bach defines exploratory
testing as simultaneous learning, test
design and test execution. I find this to
be a useful definition, not only in prac-
tice but in explaining how I perform my
exploratory testing. It divides my think-
ing into three parts: how I learn about
the software I’m testing, how I generate
test ideas and design my tests, and the
mechanics of how I execute my testing. I
find this division useful because it makes
exploratory testing easier to explain, but
also easier to practice and learn. 

In this article, the focus is on the
“simultaneous learning” part of the
exploratory testing equation. I find that
there are many articles and books avail-
able on test design and test execution,
but few that focus on the problem of
how we actually learn what the product
does. This is an important step in the
testing process, and in this article I will
share an application touring heuristic I

find useful when attempting to learn
about the product. As you read this arti-
cle, remember that the touring concept
presented below is an approach to
exploratory modeling, but it’s not a bad
thing if you suspend the tour and actual-
ly do some testing. 

Getting Started 
With Application Touring
Earlier this year, while learning from
Bach, I had a hard time getting started
with a sample application he had given
me to test. When he saw me struggling
with where to start, he offered me some
simple techniques for getting familiar
with the product. He referred to the
techniques as “tours” of the application.

20 • Software Test & Performance

Michael Kelly is an independent consultant
who focuses on test automation and explorato-
ry testing. He’s a director at large for the
Association for Software Testing and is the
director of programs for the Indianapolis
Quality Assurance Association.You can e-mail
him at Mike@MichaelDKelly.com.

A Guide to Tours to Take
On Your Next Test Project

By Michael Kelly

E xploratory software testing is a powerful and fun
approach to testing,” says James Bach. “In some

“





22 • Software Test & Performance FEBRUARY 2006

They are called
tours because you
are not necessarily
looking for prob-
lems. You are simply
learning the prod-
uct. For a tour to
become a test, you
would have to have
an oracle (the prin-
ciple or mechanism
by which we recog-
nize a problem) of
some sort.

The first tour he
suggested was the
feature tour. In the
feature tour, you move through the appli-
cation, getting familiar with all the con-
trols and features you come across. You
ask simple questions like, “What’s this
and what does it do?” and “How would I
know if this feature is working?” You look
for interactions, calculations, transforma-
tions, multimedia and error handling.
When taking a feature tour, it can be
helpful to look at one factor at a time.

The second tour was the variability
tour. In the variability tour, you look for
things you can change in the product—
and then you try to change them. Click
buttons, select values, change settings
and so forth. The goal is to try to get a
feel for how things work and what pos-
sible values might be. 

For excellent examples of applica-
tions that have a high degree of vari-
ability, check out James Lyndsay’s 
black-box testing machines at www
.workroom-productions.com. At one
point in my training, Bach had me tour
Puzzle 1 (one of the black-box testing
machines made up of five buttons and
three sliders). At the end of the tour,
Lyndsay asked me to explain—in
detail—the machine’s behavior. If you
can do that (and I struggled), you under-
stand variability. Puzzle 5 seems especial-
ly diabolical, if you ask me.

The third tour Bach suggested was
the complexity tour. In this tour, one
attempts to find the five most complex
things about the product. Complexity
can exist around features or data.
Complex features can be the most com-
mon features in an application (the
algorithm behind Google search) or
they might be rarely used—hidden away
waiting to cause problems (end-of-year
processing for an accounting system).

These three tours enabled me to
jump into the product without becom-

ing overwhelmed. As I toured the appli-
cation I was able to learn about how it
worked, I started identifying and priori-
tizing risks, and I was ultimately able to
start identifying and designing tests. 

Developing Additional Tours
Since the time I spent working with
Bach, I’ve identified other types of tours
that I’ve found helpful. All of these tours
are based on the information in his
“Heuristic Test Strategy Model.” Each
one reminds me to learn about a specif-
ic aspect of the product that I might oth-
erwise ignore, and in the process of exe-
cuting all the tours, I find that I visit the
same functionality multiple times and
look at it from different perspectives
with a different concept of risk. That jux-
taposition of different risks and features
helps me build a better internal model
of the product I’m testing.

The first tour I try to take is a claims
tour. In this tour, you attempt to find all

the information in
the product that

tells you what the
product does. This
is helpful in check-
ing for product con-
sistency. A product
can be inconsistent
with explicit or
implicit product
claims. 

Explicit claims
can often be found
in help material,
marketing material,
training material,
tool tips or even

magazine articles (such as reviews of
your product). An implicit claim can be
found when your product uses industry
terminology, has a common look-and-
feel, executes common and well-under-
stood functionality, or has a feature set
that is considered to be well-understood. 

In the claims tour, you are looking
not only to identify what the claims are,
but also to attempt to identify which
claims are vague, possibly incomplete or
even inconsistent. While that’s actually
testing, don’t forget that with explorato-
ry testing we are learning, designing and
executing our tests all at the same time.
Make sure you do not have too much
tunnel vision while you’re touring.

The next tour I take is the structure
tour. In this tour, you attempt to learn
everything you can about what consti-
tutes the physical product. That can
include the code, hardware, multime-
dia files or databases. I often look at the
source and unit tests for languages I’m
familiar with. I also try to get a look at
the database or the schema(s) if XML is
involved. When performance testing,
understanding the application architec-
ture and the hardware being used and
how it’s configured are also priorities. 

The next two tours focus on the
product’s users. The first is the user
tour. In this tour, you attempt to imag-
ine five users for the product and the
information they would want from the
product or the major features they
would be interested in. The second tour
is the scenario tour. Here, try to imag-
ine five realistic scenarios for how the
users identified in the user tour would
use this product.

When I’m attempting to imagine
users for the product, I find it helpful to
think not only about what users will do,
but what they value. I also look to see if

EXPLORATORY TESTING

FIG 1. MICROSOFT MAGNIFIER INITIAL DIALOG

FIG 2 . MAGNIFIER SETTINGS
DIALOG



FEBRUARY 2006 www.stpmag.com • 23

there is real user data available in the
application I’m testing. Test data is
good, but real data offers a different
insight into how an actual user will pos-
sibly use the system. As you’re attempt-
ing to identify your users, don’t forget
about users you may not want, such as
hackers and other malcontents; users
who don’t know what they really need
to do or how to do it; or users who
attempt to do too much with the prod-
uct at one time. 

It’s helpful to think about the envi-
ronments in which those users will oper-
ate, the access rights they will have, and
the common patterns they will follow.
Once you know who the users are, think
about compelling stories of how they use
the product. What inputs do they have,
and what outputs do they care about?
The scenarios you want to identify will be
compelling stories of how someone who
matters might do something that matters
with the product.

Depending on the product, I might
take a data tour. In this tour, you identi-
fy the major data elements of the appli-
cation: what they are, where they are,
where they go and where they come
from. I recently worked on a Web serv-
ice where the data tour was the most
informative tour I took. Since there was
no graphic user interface, little docu-
mentation on the service interface and
only one defined user, the data became
the main source for my test design. 

When taking your data tour, don’t
just identify application inputs and out-
puts, look for default values, configura-
tion files, options settings and temporal
data (that is, data that has relationships
with time). Note the size and structure of
the data you find, especially if it’s repre-
sentative of production data. Look for
possible ways to corrupt data or for ways
data can get into the system that devel-
opers may not have anticipated. Attempt
to identify how the data can be created,
accessed, modified and deleted.

Directly related to the data tour is
the configuration tour. This tour is sim-
ilar to the variability tour and the data
tour, but this time we are looking specif-
ically for persistence and how it affects
product features. Attempt to find all the
ways you can change settings in the
product in such a way that the applica-
tion retains those settings.

Another important tour is the inter-
operability (or compatibility) tour. On
this tour, you attempt to answer the fol-
lowing questions: “What does this appli-

cation interact with?” “How well does it
work with external components and
configurations?” and “What does it
depend on to function properly?” I
recently worked on a project that expe-
rienced less than 75 percent uptime in
its test environment for the entire test
cycle due to all the environmental prob-
lems we had and all the external servic-
es the application relied on. 

During this tour, determine which
applications, operating systems, hard-
ware and services the product needs to
function. Does it need any special plug-
ins, drivers, fonts or language runtimes
(Java, Ruby, etc.) to operate correctly? A
tip-off that you might be interfacing

with an external service may be the
appearance of data that you (the user)
didn’t enter. In addition, degradation
in performance can sometimes be a
clue that there is something happening
in the background. 

Finally, take a testability tour. Try to
find all the features you can use as testa-
bility features and identify the tools you
have available that you can use to help
in your testing. Take a look at James
Bach’s “Heuristics of Software Test-
ability.” Thanks to my automation back-
ground, this is my favorite tour. A testa-
bility feature is a feature of the product
that gives us more visibility into the
inner works of the product or more
control over the state of the product. 

The main testability features I look for
when taking this tour are scriptable inter-
faces, test harness and stubs, log files and
diagnostic utilities. For example, I often
look for WSDL interfaces for Web servic-
es, JUnit test harnesses for Java applica-
tions and log files for Web application
servers. An excellent example of leverag-
ing a scriptable interface can be found in
Brian Marick’s article “Bypassing the
GUI.” In addition, attempt to identify
modules or layers of the application that
can be tested independently. Many sys-
tems I’ve tested have had some level of
diagnostic utilities associated with them
(especially those that used external Web
services). The easiest way to find those is

to ask developers, but you can sometimes
find them lying around in admin con-
soles if you are lucky enough to know
where to find them. 

When looking for test tools, I look
for both open-source tools and the
commercial tools that I have available.
Depending on the software I’m testing,
I’ll look for any of the following:

Scripting languages
Disk imaging tools
File scanners
Network analyzers 
Macro tools
Debuggers
Data generators
Runtime analysis tools
Static and dynamic analyzers

EXPLORATORY TESTING

FIG 3. MAGNIFIER HELP DIALOG



24 • Software Test & Performance FEBRUARY 2006

Performance test tools
Functional automation tools
File comparison utilities
Test-case management tools
Version-control tools
Diff utilities
Capture reply tools
Video recorders

Application Tours in Action
Let’s look at an example of application
touring. For this example, we’ll look at
the Microsoft Magnifier. I’ve never even
started this application before, and all I
know about its functionality is what its
name tells me. Typically, when I tour an
application for the first time, I have a
notepad with me. As I tour the applica-
tion and develop test ideas, I list them
out on the notepad. I will do my best to
duplicate that behavior for you here.
Everything in italics is a note I would

make on my notepad. Remember that
these are heuristics, which means they
are fallible. Different people may find
different things while doing the same
tour(s).

To get things started, I’ll just launch
the application. I won’t yet actively think
of my heuristic; I’ll just click around until
I run out of ideas. I also will limit my 
touring to half an hour. That includes
both my interaction with the application
and my analysis following that interaction
where I review my heuristics. 

As soon as I start the application I’m
given a claim about the application’s func-
tionality.

Figure 1. I also see three pieces of
functionality a link to Microsoft’s Web site, a
checkbox (which also shows persistent
data—it should save my settings if I click the
box), and the OK and “X” buttons to
close the dialog. From this dialog, I also
can identify a user for this application—
someone with slight visual impairments. If I
were actually doing exploratory testing, I
would go ahead and execute some tests
at this point for the simple pieces of
functionality like the “X” button and the
OK button, but for right
now I’ll just keep touring. 

If I click OK, the dialog
closes and I’m left with the
Magnifier Settings dialog.

Figure 2. I see 11 pieces
of functionality: two but-
tons, six checkboxes, one
select box and two but-
tons on the window title
bar. After identifying
those, I also noticed that
the application accepts
hotkeys. I ask myself if it
saves my settings when I
exit. If I click Help, I get
the help screen.

Figure 3. I close this
right away thinking that
I’ll look through the claims in
more detail later and I’ll
find out if I need to test
the functionality of the
default windows help dialog.

I play around with the
magnification level a bit,
and notice that the dis-
played magnification changes. This seems
to be complex. I will need to take time to
think about tests for this feature.

Figure 4. If I move the mouse into the
magnification area, the view goes gray
and I get a message telling me that I float
the magnification area in a window. This

also seems very complex, so I note it so I can
think of meaningful tests later. 

I click each of the checkboxes, one
at a time. I note their functionality and
any behavior I notice as I do so. Finally,
I click Exit.

Using My Heuristic
It’s at this point that I start to run out 
of ideas. Now I recall my touring
mnemonic (see sidebar “Coming Up
With a Heuristic That Works”) and work
through each type of tour.

Feature tour: I think I’ve noted all
the features, but I might start up the
application again and double check to
see if I missed anything. I think I
understood everything. If I was unsure
about what a feature did, I would make
a note of it and be sure to talk to a
developer about it.

Complexity tour: I noted two features I
think are complex. As I think about
other types of complexity, it occurs to
me that screen resolution might add
another dimension to the complexity of
my testing. I will need test cases that
account for that. I’ll also need to think

about dual monitors, dif-
ferent video cards (possi-
bly) and different modes
of output, like output to a
projector. 

Claims tour: I noticed
the claims made on the
dialog and in the help file,
but I didn’t look at any
claims that might be made
on the Microsoft Web site,
in the Windows XP docu-
mentation or elsewhere. I
should look into finding
more claims made about
the application. 

Configuration tour: I
noticed that the initial
dialog might save my set-
tings. I also noticed that
some of the checkboxes
are application settings
that should be persisted. I
don’t know yet if the mag-
nification level is a persist-
ed configuration setting. 

User tour: I identified
one type of user, the one in the initial
claim. What other users might there be?
Well, I might be a user. As I think about
it, this might be an excellent testing
tool. I could have used this when testing
the precision of one of James Lyndsay’s
machines. I had been using Paint to

COMING UP WITH A
HEURISTIC THAT
WORKS

Now that I have all these tours, I need a
way to remember to use them. For me,
the easiest way to do that is with a
mnemonic. 

James Bach suggests these general
guidelines to use when developing a
heuristic:

• Attempt to solve a problem.
• Conceive of a need or desire to add 

structure to that attempt OR notice 
a pattern.

• Look for a pattern in the problem 
you are solving.

• Try to understand the pattern as 
best you can.

What’s the essence of this 
pattern?
How can I simplify this pattern?

• Label it.
• Try it (experiment with it).

Be a skeptic.
Vary your label.
See if you actually remember 
your heuristic when you need it.

The following is the heuristic I came
up with for application touring: FCC
CUTS VIDS. The mnemonic stands for
the following:

Feature tour
Complexity tour
Claims tour
Configuration tour
User tour
Testability tour
Scenario tour
Variability tour
Interoperability tour
Data tour
Structure tour

•
You are not
necessarily
looking for

problems. You
are simply

learning the
product.

•

EXPLORATORY TESTING



FEBRUARY 2006 www.stpmag.com • 25

magnify the machines in order to count
pixels. Now I don’t need to do that any-
more. So now I have testers and people
with slight visual impairments. 

I need one more user for my heuris-
tic. I guess I might also use this feature
while giving a presentation at a confer-
ence. Sometimes it can be hard to see
things in the back. 

Testability tour: Off the top of my
head I would really like a script or a tool
that lets me test/emulate many differ-
ent resolutions and graphics card set-
tings. It also might be handy to have a
tool that lets me record my desktop as I
test so I can replay crashes as videos.

Scenario tour: I already identified my
scenarios when I identified my users.
Given (what I believe to be) the narrow
scope the application, I needed scenar-
ios to help me think of users. That’s
OK—just recognize that any of the
users identified might have multiple
scenarios that may be meaningful. 

Variability tour: The most variable fea-
ture is the magnification level and the
actual magnification display. I can also
vary the settings. 

Interoperability tour: I know there is a
tie into the default windows help dialog,
I don’t know that it talks to any other
applications. I might ask around and
look closer at the claims to ensure
things are as simple as I think they are. 

Data tour: I know it should save
some settings when I exit, and I know
it has temporal data when I use it (the
area of the screen it’s magnifying). I
don’t know where this data is stored
(see structure tour). I have not yet
thought to test the preset data. I
already messed up the settings that
we selected the first time I launched
the application. I was lucky that I
took a screen shot when I first
opened it. Otherwise I would have to
reinstall.

Structure tour: I have not yet looked

at the structure of the application at
all. I need to find where all the appli-
cation files are stored, what DLLs are
used (that may help me when thinking
about interoperability), and I have not
seen the source code. Since I know I
can’t see the source code, I would at
least like to know the language,
because that may tip me off to com-
mon implementation problems when
using that language. 

At this point, I would review my
notes and start to go around and ask
developers questions about what I have
so far. I would then organize my ideas
into exploratory test charters and
begin my first round of testing.

Next Steps
First, identify how you tour the applica-
tions you test. Most likely you do it with-
out even thinking about it. Open an
application you have never used before
and just write down what you notice.
When you are done, you can come back
and identify patterns in what you look for.
Once you know what you can already
find, you can develop a heuristic to help
you identify the areas of the application
you normally overlook. 

Once you have a heuristic (I like
mnemonics since they allow me to
quickly write out more detail in my
notes), label it in a way that allows you
to remember it. Then try using it. Be
skeptical of its effectiveness. Try to
identify holes in it. And most impor-
tant, see if you actually remember your
heuristic when you need it—when you
test a new application. !

REFERENCES
• Bach, James, “Exploratory Testing Explained,”

www.satisfice.com/articles/et-article.pdf, 2003.
• Bach, James, “Heuristic Test Strategy Model,”

www.satisfice.com/tools/satisfice-tsm-4p.pdf, 2003.
• Bach, James, “Heuristics of Software Testability,”

www.satisfice.com/tools/testable.pdf, 2003.
• Bach, Jonathan,“Session-Based Test Management,”

www.satisfice.com/articles/sbtm.pdf, 2000.
• Marick, Brian, “Bypassing the GUI,” STQE 

Magazine, September/October 2002.

EXPLORATORY TESTING

FIG 4. EXAMPLE OF MAGNIFIER IN ACTION


