LAB: JUDGMENT AND CREDIBILITY IN THE EVALUATION OF BUG REPORTS

Version 1.0
Fall 2011
UNDERLYING PROBLEM

• Project manager gets a steady stream of bug reports
• Must decide which bugs to fix
IDEAL DECISION RULE

Fix the bug IF

• value of the changed product
• exceeds value of the unchanged product
• by more than the cost of the change.

Remember: Quality is "value to some person"
PROBLEMS WITH THE IDEAL DECISION RULE

1. We have to estimate the likely change in value
 – Value to who?
 ▪ His boss?
 ▪ Internal stakeholders?
 ▪ Cumulated across the market?
 – What if the value of the change varies and is negative for some people?

2. We have to estimate likely cost

3. Resources are finite
 – The cost of fixing all "worthy" bugs might exceed resources, therefore we must prioritize
Decisions are made under uncertainty

- Value is uncertain
- Cost is uncertain
- Resource availability is uncertain
- Opportunity cost is uncertain

- Therefore, priority is uncertain
Modified Decision Rule

- Perceived significance of a bug:
 - Based on estimated value, cost, urgency, etc.
- RULE:
 - Fix High-Significance bugs
- RULE (same rule, restated):
 - **Fix bugs whose Significance > C**
 - where C is a Constant (criterion value)
Significance is a function of value, cost (and other variables), but we can only estimate value and cost (and the other variables). There are estimation errors.
SHOULD WE FIX IT?

Should this bug be fixed or not?
How can we tell?
THE DECISION RULE

Fix the bug if perceived significance > C
We want to fix the significant bugs (S) and not fix the not-significant (N) bugs.
Fix any bug whose perceived significance exceeds C.
Fix any bug whose perceived significance exceeds C

- We fix some N's
- We don't fix some S's
For EVERY POSSIBLE value of C

- We will fix some N's
- We won't fix some S's

Because the tails of the distributions go to ± infinity
<table>
<thead>
<tr>
<th></th>
<th>Don't Fix</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significant (S curve)</td>
<td>MISS</td>
<td>HIT</td>
</tr>
<tr>
<td>Not Significant (N curve)</td>
<td>CORRECT REJECTION</td>
<td>FALSE ALARM</td>
</tr>
</tbody>
</table>
Rule: Fix any bug with a Perceived Significance > C

Perceived Significance < C
- Misses (S)
- Correct rejections (N)

Perceived Significance > C
- Hits (S)
- False alarms (N)
PARAMETERS

- **C**: the decision criterion
- **Mean_Of_N**: Underlying "average" perceived severity for the Not-Significant bug
- **Mean_Of_S**: Underlying "average" perceived severity for the Significant bug
- **SIGMA**: Standard deviation of the curves (assume they are the same)
- **d'** (pronounced "d-prime"): Difference between Mean_Of_S and Mean_Of_N
 - **d'** = Mean_Of_S – Mean_Of_N in units of SIGMA
 - e.g. d' = 3 sigma.
IMPLICATIONS OF THE MODEL

1. What is the impact on the error rates (Miss and False Alarm) if you reduce SIGMA?
 – Why?
 – What could reduce SIGMA?
IMPLICATIONS OF THE MODEL

2. What is the impact on the error rates (Miss and False Alarm) if you increase \(d'\) ?
 – Why?
 – What could increase \(d'\) ?
IMPLICATIONS OF THE MODEL

3. What is the impact on the error rates (Miss and False Alarm) if you increase C?
 – Why?
 – What could cause an increase in C?
 – Why?

For this exercise, pretend that the owner of C is the project manager.
4. What is the impact on the error rates (Miss and False Alarm) if you decrease C?
 – Why?
 – What could cause a decrease in C?
 – Why?

For this exercise, pretend that the owner of C is the project manager.